
How do you solve (x - 4)^2 = 16? - Socratic
2018年3月29日 · x=0,8 Given: (x-4)^2=16 Square root both sides: x-4=sqrt(16) x-4=+-4 So we got: x_1-4=4,x_2-4=-4. x_1=4+4 =8 x_2=-4+4 =0 :.x\\in{0,8}
How do you express 1/(x^4 - 16) in partial fractions? - Socratic
2016年6月16日 · How do you write the partial fraction decomposition of the rational expression # (3x^2 + 12x
What are the roots of the equation x^3 +4x^2-4x- 16=0? - Socratic
2016年12月18日 · The roots are: x = 2, x = -2 and x=-4 The difference of squares identity can be written: a^2-b^2 = (a-b)(a+b) We use this with a=x and b=2 later. Given: x^3+4x^2-4x-16 = 0 Note that the ratio between the first and second terms is the same as the ratio between the third and fourth terms, so this cubic factors by grouping: 0 = x^3+4x^2-4x-16 ...
How do you express (x^3 + 2) / (x^4 -16) in partial fractions?
2016年11月20日 · How do you express # (x^3 + 2) / (x^4 -16)# in partial fractions? Precalculus Matrix Row Operations Partial Fraction Decomposition (Linear Denominators) 1 Answer
How do you factor #4x^4 - 64 - Socratic
2016年9月3日 · Which method do you use to factor #3x(x-1)+4(x-1) #? What are the factors of #12x^3+12x^2+3x#? How do you find the two numbers by using the factoring method, if one number is seven more than...
How do you integrate int x^3/ ( (x^4-16) (x-3))dx using partial ...
2016年5月4日 · Start from the given integral and set up the variables using A, B, C ,D, E. #int (x^3)/((x^4-16)(x-3))dx=# #int((Ax+B)/(x^2+4)+C/(x+2)+D/(x-2)+E/(x-3))dx#
How do you find all the zeros of f(x)=x^3-4x^2+16x-64? - Socratic
2016年8月14日 · f(x) has zeros 4 and +-4i Note that the ratio of the first and second terms is the same as that of the third and fourth terms. So this cubic factors by grouping: x^3-4x^2+16x-64 =(x^3-4x^2)+(16x-64) =x^2(x-4)+16(x-4) =(x^2+16)(x-4) =(x^2-(4i)^2)(x-4) =(x-4i)(x+4i)(x-4) Hence zeros: +-4i and 4
What the slope of #x^4y^4=16# at #(2,1) - Socratic
2018年5月13日 · The slope (of the tangent) to the curve at the given coordinate is -1/2 We seek the slope (of the tangent) to the curve: x^4y^4 = 16 at the coordinate (2,1). The gradient of the tangent to a curve at any particular point is given by the derivative of the curve at that point. So if we differentiate the equation implicitly, and apply the …
How do you solve the following system: #2x-4y=6 , y + 4x = 16
2018年5月17日 · See a solution process below: Step 1) Solve the second equation for y: y + 4x = 16 y + 4x - color(red)(4x) = 16 - color(red)(4x) y + 0 = 16 - 4x y = 16 - 4x Step 2) Substitute (16 - 4x) for y in the first equation and solve for x: 2x - 4y = 6 becomes: 2x - 4(16 - 4x) = 6 2x - (4 * 16) + (4 * 4x) = 6 2x - 64 + 16x = 6 2x + 16x - 64 = 6 (2 + 16)x - 64 + color(red)(64) = 6 + color(red)(64) 18x ...
How do you find k(4-x) given k(x)=4x-4? + Example - Socratic
2016年8月27日 · k(4-x) = 12-4x Given: k(x) = 4x-4 The variable x can be replaced by any other variable, e.g. t... k(t) = 4t-4 Now substitute 4-x for t to find: k(4-x) = 4(4-x) - 4 = 16-4x-4 = 12-4x