
In this work we give a universal fully-succinct zk-SNARK with significantly improved prover run time compared to fully-succinct Sonic. At a high level our improvements stem from a more direct arithmetization of a circuit as compared to the [BCC+16]-inspired arithmetization of [MBKM19].
GitHub - ZK-Garage/plonk: A pure Rust PLONK implementation …
The plonk-book is a module which contains a detailed overview of the working parts within a EC based ZKP system, with explanation of some of the characteristics particular to PLONK, e.g. Lagrange bases. There is a also a chapter on the construction of the PLONK algorithms, as well as an explanation of the implementations features and details ...
Under the hood of zkSNARKs — PLONK protocol: Part 1
2023年11月2日 · PLONK is one of the zero-knowledge proving systems that belong to the SNARK group. Compared to Groth16, which is an older system, PLONK offers advantages such as a universal and updatable...
Plonky2入门指南 ——关于全世界最快的ZK技术 - CSDN博客
2022年1月13日 · 本文介绍了Plonky2,一种递归zk-SNARK技术,比现有方案快100倍,与以太坊原生兼容。 Plonky2利用递归提高效率,减少了证明时间和资源需求,旨在将以太坊扩展到十亿用户。
PlonK Deconstructed - Maya ZK Blog
2024年3月13日 · Welcome to our blog series about the PlonK protocol. If you've heard a thing or two about SNARKs, zero-knowledge, or PlonK and want to understand how it works, then you are in the right place. We will cover PlonK from the ground up, with focusing on explaining the core ideas and crucial steps.
理解 Plonk 系列 - ZKPunk's ZKPedia
郭宇:ZK 技术的学习心得和经验分享; 对话姚翔:解读零知识证明的前世今生; 邓燚:零知识,模拟与归约(一个个人化的视角) ZK Academy
初识PLONK(V神博客解读)-CSDN博客
2020年1月6日 · 多项式承诺(polynomial commitment)是一个短对象,其“代表”一个多项式,并允许你验证该多项式的计算,而不需要实际包含多项式中的所有数据。 也就是说,如果有人给你一个代表P (x)的承诺c,他们可以给你一个证明,然后说服你对于某个特定的z,P (z) 值是多少。 还有一个进一步的数学结果表明,在一个足够大的域上,如果关于在随机z上定值的多项式的某些类型的方程(在z已知之前选择)是真的,那么这些相同的方程对整个多项式也是真的。 例如,如 …
PLONK: Permutations over Lagrange-Bases for Oecumenical
To verify copy constraints, equations such as \(a(5) = c(7)\) and \(c(10) = c(12)\), PLONK uses coordinate accumulators. Two accumulators are created, one with \(X(x) = x\) and \(Y(x) = a(x)\), and the other with \(Y(x) = a(x)\), but \(X'(x)\) is a polynomial that evaluates permutations, flipping, or rearranging values in each copy constraint.
arielgabizon/plonk: the plonk universal zk-snark - GitHub
the plonk universal zk-snark. Contribute to arielgabizon/plonk development by creating an account on GitHub.
PLONK.PRO
Including comprehensive information on ZKP, detailed tutorials, and more. These resources can enhance your understanding of this powerful tool. It's a DSL for plonkish arithmetic circuits with enhanced readability, expressiveness and compatibility.