
deep-diver/LLM-Pool - GitHub
LLM-Pool This simple project is to manage multiple LLM(Large Language Model)s in one place. Because there are too many fine-tuned LLMs, and it is hard to evaluate which one is bettern than others, it might be useful to test as many models as possible.
Public LLM pool - Kalavai Documentation
LLM pools in Kalavai are an easy way to expand your computing power beyond a single machine, with zero-devops knowledge. Kalavai aggregates the GPUs, CPUs and RAM memory from any compatible machine and makes it ready for LLM workflows. All you need is three steps to get your supercomputing cluster going:
发布可随处安装的大语言模型LLM Pools端到端部署 | LLM Info
2025年1月9日 · LLM Pools是全功能环境,可安装在日常硬件上以简化大语言模型部署。 与多种模型引擎兼容,开箱即用,支持单节点和多节点,有单一API端点和用户界面交互区。
引擎参数 | vLLM 中文站
如果 tokenizer_pool_size 设置为 0,则此选项会被忽略。 --limit-mm-per-prompt 对于每个多模式插件,需要限制每个提示能够处理的输入实例数量。
ToolLLM=LLM+tool use--大模型的高级玩法 - 知乎 - 知乎专栏
2023年8月13日 · 于是为了促进开源大模型工具使用能力的建设, 研究人员提出了一个通用的tool-use框架ToolLLM,包括构建数据集ToolBench,设计自动评估方案ToolEval,并基于此训练了一个语言模型ToolLLaMA,在工具使用的表现足以媲美 ChatGPT。 Tool learning旨在释放大规模语言模型的能力,通过跟诸多API进行有效交互进而完成复杂任务。 目前这方面已经有些工作了,但是依旧不能完全激发LLM的工具使用能力,这是由于以下几个缺陷所导致的。 a) APIS受限,无 …
Turn your devices into a scalable LLM platform
Deploy and iterate quickly with ready-made templates for popular LLM frameworks: llama.cpp, vLLM, Petals and more. You define what resources you need, the pool distributes the workload in available hardware. Need to move to the cloud? No issues, the pool will redeploy with no down time. Choose the plan that suits your LLM journey.
LLM Pools: end to end LLM deployment in-a-box, without a cloud …
2025年1月9日 · TL;DR: You can use Kalavai LLM Pools to handle all steps in LLM deployment: from coordinating the multi-node computing required and storage needs, to deploy using any Model Engine on Earth and orchestrate inference. Check out our open source platform and a ready-made guide on how to join the first ever public LLM pool.
MemServe: Context Caching for Disaggregated LLM Serving with …
大型语言模型(LLM)服务已经从无状态转变为有状态系统,利用 上下文缓存 和 分离推理 等技术。 这些优化扩展了 KV缓存 的寿命和领域,需要一种新的架构方法。 我们提出了 MemServe,一个统一的系统,整合了请求间和请求内优化。 MemServe引入了 MemPool,一个管理分布式内存和KV缓存的弹性内存池跨服务实例。 使用MemPool API,MemServe首次将上下文缓存与分离推理结合起来,由全局调度程序支持,通过基于全局提示树的局部感知策略增强缓存重用。 测 …
Self-hosted LLM pool - Kalavai Documentation
This guide will show you how to start a self-hosted LLM pool with your own hardware, configure it with a single API and UI Playground for all your models and deploy and access a Llama 3.1 8B instance. What you'll achieve. Configure unified LLM interface; Deploy a llamacpp model; Access model via code and UI; 1. Pre-requisites. Install kalavai ...
[2406.17565] MemServe: Context Caching for Disaggregated LLM …
2024年6月25日 · MemServe introduces MemPool, an elastic memory pool managing distributed memory and KV caches across serving instances. Using MemPool APIs, MemServe combines context caching with disaggregated inference for the first time, supported by a global scheduler that enhances cache reuse through a global prompt tree-based locality-aware policy.