
[1911.07104] RSM-GAN: A Convolutional Recurrent GAN for …
2019年11月16日 · This paper presents a novel unsupervised deep learning architecture for multivariate time series anomaly detection, called Robust Seasonal Multivariate Generative Adversarial Network (RSM-GAN). It extends recent advancements in GANs with adoption of convolutional-LSTM layers and an attention mechanism to produce state-of-the-art performance.
(十一)RSM-GAN: A Convolutional Recurrent GAN for Anomaly …
2020年5月1日 · 该篇论文主要围绕“异常检测+硬盘故障预测+gan+非监督”展开,以下是个人对整篇文章脉络的整理和理解。 文章目录一、论文概括二、相关的研究三、论文主体——提出基于lstm的非监督对抗学习方法 一、论文概括 研究对象 目的 方法 结论 结果 二、相关的研究 ...
XRD应用分享 | 单晶外延薄膜高分辨XRD表征 - 知乎
2024年1月10日 · 倒空间强度分布(rsm) RSM是直观的分析薄膜与衬底失配关系以及薄膜缺陷的方法。 传统的HRXRD上收集一张RSM需要几个甚至几十个小时。
Strain-stress study of AlxGa1−xN/AlN heterostructures on c-plane ...
2019年7月15日 · High-resolution X-ray diffraction (HRXRD) and reciprocal space mapping (RSM) could be used to understand the crystal properties and to analyze the strain and stress in epitaxially grown...
We compare RSM-GAN with existing classical and deep-learning based anomaly detection models, and the results show that our architecture is associated with the lowest false positive rate and improves precision by 30% and 16% in real-world and synthetic data, respectively. Furthermore, we re-port the superiority of RSM-GAN regarding accurate root
RSM-GAN: A Convolutional Recurrent GAN for Anomaly …
The RSM-GAN framework enables system operators to react to abnormalities swiftly and in real-time manner, while giving them critical information about the root causes and severity of the anomalies.
RSM-GAN: A Convolutional Recurrent GAN for Anomaly …
2019年11月16日 · We compare RSM-GAN with existing classical and deep-learning based anomaly detection models, and the results show that our architecture is associated with the lowest false positive rate and...
RSM-GAN: A Convolutional Recurrent GAN for Anomaly …
This paper presents a novel unsupervised deep learning architecture for multivariate time series anomaly detection, called Robust Seasonal Multivariate Generative Adversarial Network (RSM-GAN). It extends recent advancements in GANs with adoption of convolutional-LSTM layers and an attention mechanism to produce state-of-the-art performance.
"RSM-GAN: A Convolutional Recurrent GAN for Anomaly …
2019年12月2日 · RSM-GAN: A Convolutional Recurrent GAN for Anomaly Detection in Contaminated Seasonal Multivariate Time Series. CoRR abs/1911.07104 (2019)
以GaN 为代表的第三代半导体材料以其优异 的性能成为近年来人们研究的热点之一, 被广泛的 应用于抗辐射、高频、大功率和高密度集成的电 子器件和各种发光、光探测器件[1]. 但是由于没 有合适的同质外延衬底材料(GaN 与蓝宝石之间有