
What does "versus" mean in the context of a graph?
Say you have a graph of say $y=mx+b$, with $x$ on the horizontal axis and $y$ on the vertical axis. You need to give the graph a title, would you say: This is a graph of "$y$ versus $x$?"
Graphing Calculator - Desmos
Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more.
统计笔记 | 谁是 x,谁是 y?区分英语中应变量自变量的表达 - 哔哩 …
“Plot Y vs X” (或 “Plot Y against X”) 这通常是最常见、最标准的写法,意思是“让 X 作为横轴,Y 作为纵轴”。 其隐含逻辑是“X 被当作自变量,Y 被当作因变量”。 比如 “Plot mpg vs hp” 就常被理解为:hp 在横轴 (x = hp),mpg 在纵轴 (y = mpg)。 记忆小窍门:把 “vs” 理解成 “Y 视为(as a function of)X”。 或把“vs”想成“Y is plotted against X”。 2. “Plot A by B” 这个写法其实最容易令人困惑,因为在不同材料里有人把它当成“B 是 x,A 是 y”,也有人直接视作英文短语 “A by B” = …
[讨论] 在波形窗口里面的Y vs Y功能如何使用 Skill 代码实现?
2023年8月1日 · 我知道有 ocnYvsYplot () 函数,但是这个函数好像不能绘制曲线族,每次报错“ *Error* Waveforms are not family/simple waves ”,即使我已经指定x变量为一个一维向量了。 请问大家知道如何实现曲线族修改x坐标吗? 或者说我所述的 ocnYvsYplot () 函数用法有错误? 例如做dc仿真,dc中本身有Vbias的参数扫描,然后再使用tool中的parametric analysis扫描Wp,输出设为OUT。 这时候就能得到横轴为Vbias的曲线族,每一根曲线对应不同的Wp。 这时候我不想让 …
Graph y=0 | Mathway
Graph the line using the slope, y-intercept, and two points. Free math problem solver answers your algebra, geometry, trigonometry, calculus, and statistics homework questions with step-by-step explanations, just like a math tutor.
Graphing Y=0, Slope & Y-Intercept | Methods & Shortcuts
2023年11月21日 · The y-intercept is 0, so you place a dot at the point (0, 0). Find your next point by using the slope. The slope is 0, so this tells you that no matter how far you go to the left or right,...
Difference between y and y0 : r/AskPhysics - Reddit
2024年3月31日 · Most textbook authors would define y0 (or y_0) to be the initial value of y, and generic y is the value at any time t. As the object falls, y keeps changing but y0 is constant.
calculus - Why $y(0)=0$ implies $y=0$ for $y'=y$? - Mathematics …
2023年2月15日 · To see why it's the only solution: the Picard–Lindelöf theorem roughly says that if $f(x, y)$ is continuous in $x$ and Lipschitz in $y$, then there's a unique solution for some closed interval around your initial condition.
Solving $y'' - y = 0$ - Mathematics Stack Exchange
Equation $(2)$ gives you $\displaystyle g(x) = c_1 e^{x}$ and Equation $(2)$ gives you $\displaystyle y(x) = c_1 e^x + c_2 e^{-x}$. It also gives you an idea that solution will be of form $y(x)=e^{\lambda x}$. The idea is to represent the equation in terms of operator. i.e. $(D^2 …
Solve y=0 | Microsoft Math Solver
Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more.
- 某些结果已被删除