
SOLUTION: find the exact value of sin 195 - Algebra Homework Help
Question 440921: find the exact value of sin 195 Answer by lwsshak3(11628) (Show Source):
SOLUTION: Using sum or difference formulas, find the exact value …
Question 869666: Using sum or difference formulas, find the exact value of sin(195∘). Express your answer in the form sin(195degrees)=a√(1−√b)/4 for some numbers a and b. Express your …
Question #292bd - Socratic
#195^o# is in the third quadrant and so sine is negative so. #sin(195)=-sin(195-180)=-sin15# we could use a calculator to find this value but using the identities will give us the exact answer
How do you find the exact values of the sine, cosine, and ... - Socratic
2017年2月25日 · tan (-165) = (sqrt(2 - sqrt3))/(sqrt(2 + sqrt3) sin (-165) = sin (195) --> co-terminal. Call sin (195) = sin t Use trig table and unit circle: cos 2t = cos 390 = cos (30 + 360) = cos 30 = …
SOLUTION: Use an Addition or Subtraction Formula to find the …
sin 195° Answer by reviewermath(1029) (Show Source): You can put this solution on YOUR website! sin 195 ...
Question #b3c4b - Socratic
2016年12月3日 · How do you use the sum and difference identities to find the exact value of tan 105 degrees
SOLUTION: Find the exact values of the sine, cosine, and tangent …
195° = 240° − 45° sin(195°) 105° = 75° + 30° sin(195°) Algebra -> Trigonometry-basics -> SOLUTION: Find the exact values of the sine, cosine, and tangent of the angle. Algebra: …
How do you divide (-7-2i) / (5-6i) in trigonometric form? - Socratic
2018年7月3日 · #z_1 / z_2 = (|r_1| / |r_2|) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))# #z_1 = -7 - 2i , z_2 = 5 - 6i #
SOLUTION: How can I express sin195 in terms of a reference angle?
Work to relate 195 degrees to differences from 90, or 180, or 270 or 360 degrees. 195 is a little more than 180 degrees. 195-180=15 degree difference, and this is in quadrant 3. Using how …
Let sin(4x-1=cos(2x+7) write and solve an equation to the
2018年4月27日 · The full solution to sin(4x-1^circ)=cos(2x + 7^circ) is x= 14 ^circ + 60^circ k or x = 49^circ + 180^circ k quad for integer k. That's a slightly odd looking equation. It's not clear if …