
real analysis - How can I prove $\sup(A+B)=\sup A+\sup B$ if $A+B=\{a+b …
Hence, $\sup(A +B) − \sup A$ is an upper bound for any $\color{magenta}{b}$. By the definition of supremum, the previous inequality means: $$\color{magenta}{\sup B} \leq \sup(A + B) − \sup A …
《数学分析》6.关于确界的一些简单性质及其证明 - 知乎
若 \ [f\left ( x \right)\] 是定义在 \ [D\] 上的 有界函数. 记 上确界 为 \ [\mathop {\sup }\limits_ {x \in D} f\left ( x \right)\] , 下确界 为 \ [\mathop {\inf }\limits_ {x \in D} f\left ( x \right)\] ,则. \ [i)\]\ [ - …
real analysis - Prove that $Sup (A + B) = Sup (A) + Sup (B ...
Jul 9, 2019 · Since both A and B are non-empty bounded subsets of R if follows that both A and B have a finite Supremum. Thus sup (A) and sup (B) exist. Obviously sup (A) ≥ a ∀a ∈ A and …
real analysis - Prove that $\sup (A+B) = \sup (A) + \sup (B)$ and …
First, we need to show that $\sup(A) + \sup(B)$ is an upper bound for the set $A + B$. Indeed, if $z\in A + B$, then there exists $a\in A$ and $b\in B$ such that $z = a + b$. But by definition of …
令A+B= {a+b|a∈A,b∈B} 求证:sup (A+B)=sup A + sup B (sup是 …
Oct 3, 2011 · 令A+B={a+b|a∈A,b∈B} 求证:sup(A+B)=sup A + sup B (sup是上确界)(1)对任意a∈A,有a≤supA ; 对任意b∈B,有b≤supB, 则对任意a+b∈A+B,有a+b≤supA+supB, …
一图搞懂 sup:上确界, inf:下确界 - CSDN博客
Aug 11, 2020 · sup (X)是取上限函数,inf (X) 是取下限函数。 sup是supremum的简写,意思是:上确界,最小上界。 inf是infimum的简写,意思是:下确界,最大下界。 一、上确界: 上 …
sup(A) + sup(B) =sup(A+B) - 百家号
Nov 25, 2023 · 如果 A 和 B 是 R 上的非空子集,我们用 sup (A),sup (B),sup (A+B) 分别表示集合 A,集合 B,集合 A+B 的最小上界,本文要证明的就是这三个最小上界的关系。 也就是说 …
- [PDF]
Chapter2
Proposition 2.9. Suppose that A, B are nonempty sets of real numbers such that x ≤ y for all x ∈ A and y ∈ B. Then supA ≤ inf B. Proof. Fix y ∈ B. Since x ≤ y for all x ∈ A, it follows that y is an …
数学分析证明sup(a+b)=supa+supb - 百度知道
supA=a,supB=b,由 上确界 定义,对任给的ε>0,存在x∈A,y∈B,使得a-ε<x≤a,b-ε<y≤b,所以对2ε>0存在x+y∈A+B,使得a+b-2ε<x+y≤a+b,这就是说sup (A+B)=a+b. 数学分析证明sup …
real analysis - Proof that $\sup AB=(\sup A)(\sup B)
Oct 14, 2024 · Prove that sup AB = (sup A)(sup B), where AB is the product of the sets and A, B ⊆ R +. Since A, B are bounded above, sup A and sup B exist. Let α = sup A and β = sup B. …