
MulDE: Multi-teacher Knowledge Distillation for Low …
2020年10月14日 · In this paper, instead of training high-dimensional models, we propose MulDE, a novel knowledge distillation framework, which includes multiple low-dimensional hyperbolic …
Mulde - Wikipedia
The Mulde (German pronunciation: ⓘ) is a river in Saxony and Saxony-Anhalt, Germany. It is a left tributary of the Elbe and is 124 kilometres (77 mi) long. The river is formed by the …
In this paper, instead of training high-dimensional models, we propose MulDE, a novel knowledge distillation frame- work, which includes multiple low-dimensional hyperbolic KGE models as …
MulDE:面向低维知识图嵌入的多教师知识蒸馏 - CSDN博客
2021年10月19日 · 论文介绍了一种名为MulDE的新方法,旨在解决低维知识图嵌入的问题。MulDE通过多教师知识蒸馏,避免了高维模型的训练成本和存储需求,同时保持了知识准确性。
jakubmicorek/MULDE-Multiscale-Log-Density-Estimation-via …
This is the official PyTorch implementation of the density-based anomaly detector "MULDE" which is trained via score matching. The anomaly detector is proposed in the paper MULDE: …
MULDE: Multiscale Log-Density Estimation via Denoising Score …
2024年12月11日 · mulde可以通过以对象为中心或以帧为中心的方式进行训练以检测视频异常。 在以对象为中心的方法中,使用对象检测器(OD 最低0.47元/天 解锁文章
MULDE approximates the negative log-density of noisy, normal video features at multiple levels of noise σ with a neural network f(·, σ). The log-likelihoods estimated at multiple noise levels are …
MulDE: Multi-teacher Knowledge Distillation for Low-dimensional ...
2020年10月14日 · In this paper, instead of training high-dimensional models, we propose MulDE, a novel knowledge distillation framework, which includes multiple low-dimensional hyperbolic …
论文浅尝 | MulDE:面向低维知识图嵌入的多教师知识蒸馏 - 专知
本文提出了一种新的面向低维知识图嵌入的多教师知识蒸馏方法MulDE来解决这个问题。 选择使用多个低维度(64维)教师有以下3个好处: 1. 降低预训练成本; 2. 能保证教师的性能; 3. 提 …
In this paper, instead of training high-dimensional models, we propose MulDE, a novel knowledge distillation framework, which includes multiple low-dimensional hyperbolic KGE models as …