
How do you find the derivative of #x^(log(base5)(x))#? - Socratic
2016年9月18日 · 2x^(log_5(x)-1)log_5(x) >y=x^(log_5(x)) Take the natural logarithm of both sides. (This is known as logarithmic differentiation.) ln(y)=ln(x^(log_5(x))) Use the rule: log(a^b)=b*log(a) to rewrite this function: ln(y)=log_5(x)*ln(x) Now, rewrite log_5(x) in logarithms with base e using the change of base formula: log_a(b)=log_c(b)/log_c(a). ln(y ...
How do you evaluate #ln(ln e^(e^100))#? - Socratic
2016年3月31日 · We have: #ln(ln(e^(e^100)))# Within the innermost logarithm, we can use the following rule: #ln(color(blue)a^color(red)b)=color(red)b*ln(color(blue)a)#
How do you calculate log_10 (7)? + Example - Socratic
2016年11月16日 · For example, if we use ln(10) ~~ 2.3026 then the iterates look like this: 1.00000000000000 0.86971249891427 0.84578273695874 0.84509858389730 0.84509804001812 0.84509804001426 0.84509804001426 Note that we do not need to know ln(10) very accurately in order to find log_10(7) - it just affects the rate of convergence.
How do you differentiate y= log _3 x? - Socratic
2016年11月4日 · (dy)/(dx)=1/(xln3) We can't directly derive logarithms with bases different to e, so we have to make this equation in terms of the natural log ln. Using change of base, we can convert this to y=(lnx)/(ln3) 1/(ln3) is just a constant, and thus will not change.
What is the derivative of #log_2(x^2/(x-1))#? - Socratic
2016年11月21日 · Calculus Differentiating Logarithmic Functions Differentiating Logarithmic Functions without Base e. 2 Answers . Douglas K.
How do you condense #1/3log_(2)27 - log_(2)9 - Socratic
2016年5月18日 · Use #log_b (m/n)=log_b m - log_b n, nlog_b a =log_b(a^n)# and . #log_b a = log a/log b = ln a/ln b#.. Here, #(1/3)log_2 27-log_2 9=log_2(27^(1/3)) - log_2 9#
How do you use the Change of Base Formula and a calculator
2015年6月20日 · How do you use the Change of Base Formula and a calculator to evaluate the logarithm #log_2 12#? Precalculus Properties of Logarithmic Functions Functions with Base b 1 Answer
What is the base conversion formula for logarithms? | Socratic
2014年10月4日 · Log base "a" of "x" is the same quotient of log base"b" of "x" and log base "b" of "a". This allows us to convert a base that is not easily solvable into the division of of logs with common base that is easy to solve.
What is the integration of #1/log(sqrt(1-x))# - Socratic
2016年5月27日 · The ultimate infinite series appears as answer. I am yet to study the interval of convergence for the series. As of now, |x/(ln(1-x) )|<1 The explicit interval for x, from this inequality, regulates the interval for any definite integral for this integrand. Perhaps, I might give this, in my 4th edition of the answer.
How do you find the derivatives of #y=log_x(a)#? - Socratic
2017年1月16日 · d/(dx) (log_x(a)) = -lna/(xln^2(x)) You can use this property of logarithms: log_b(a) = lna/lnb so that: y= lna/lnx and: (dy)/(dx) = d/(dx) (log_x(a))= d/(dx) (lna ...