
GitHub - haoheliu/AudioLDM2: Text-to-Audio/Music Generation
AudioLDM 2 is available in the Hugging Face 🧨 Diffusers library from v0.21.0 onwards. The official checkpoints can be found on the Hugging Face Hub, alongside documentation and examples scripts. The Diffusers version of the code runs upwards of 3x faster than the native AudioLDM 2 implementation, and supports generating audios of arbitrary ...
cvssp/audioldm2 - Hugging Face
AudioLDM 2 is a latent text-to-audio diffusion model capable of generating realistic audio samples given any text input. It is available in the 🧨 Diffusers library from v0.21.0 onwards. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional sound effects, human speech and music.
AudioLDM: Text-to-Audio Generation with Latent Diffusion …
AudioLDM 2 achieves state-of-the-art performance in text-to-audio and text-to-music generation, while also delivering competitive results in text-to-speech generation, comparable to the current SoTA. Figure 1: The overview of the AudioLDM2 architecture. The AudioMAE feature is a proxy that bridges the audio semantic language model stage (GPT-2 ...
AudioLDM 2 - Hugging Face
Inspired by Stable Diffusion, AudioLDM 2 is a text-to-audio latent diffusion model (LDM) that learns continuous audio representations from text embeddings. Two text encoder models are used to compute the text embeddings from a prompt input: the text-branch of CLAP and the encoder of Flan-T5 .
AudioLDM 2,加速⚡️! - Hugging Face
本文将展示如何在 Hugging Face 🧨 Diffusers 库中使用 AudioLDM 2,并在此基础上探索一系列代码优化 (如半精度、Flash 注意力、图编译) 以及模型级优化 (如选择合适的调度器及反向提示)。 最终我们将推理时间降低了 10 倍 多,且对输出音频质量的影响最低。 本文还附有一个更精简的 Colab notebook,这里面包含所有代码但精简了很多文字部分。 最终,我们可以在短短 1 秒内生成一个 10 秒的音频! 受 Stable Diffusion 的启发,AudioLDM 2 是一种文生音频的 _ 隐扩散模型 …
一文详解 Latent Diffusion官方源码 - CSDN博客
该类实现一个基于 VAE 的 AutoEncoder. 方法: init_from_ckpt(self, path, ignore_keys=list()). 从指定路径加载模型和状态字典. (代码略) encode(self, x). 输入 x, 输出一个高斯分布, 返回一个 …
LDM(Latent Diffusion Model)详解 - 知乎 - 知乎专栏
LDM是一个二阶段的模型,包括训练一个VQ-VAE和扩散模型本身,LDM的计算流程如图4所示。 LDM有三个主要模块: 感知图像压缩(Perceptual Image Compression):图3中最左侧红框部分是一个VQ-VAE,用于将输入图像x编码为一个离散特征z。 LDM:图3的中间绿色部分是在潜变量空间的扩散模型,其中上半部分是加噪过程,用于将特征 z 加噪为 z_T 。 下半部分是去噪过程,去噪的核心结构是一个由交叉注意力(Cross Attention)组成的U-Net,用于将 z_T 还原为 …
Latent Diffusion Models - GitHub
Our 1.45B latent diffusion LAION model was integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: A 1.45B model trained on the LAION-400M database. A class-conditional model on ImageNet, achieving a FID of 3.6 when using classifier-free guidance Available via a colab notebook .
Stable Diffusion 模型演进:LDM、SD 1.0, 1.5, 2.0、SDXL、SDXL …
2024年5月21日 · 这里我们继续介绍 Stable Diffusion 相关的三个图像生成工作,Latent Diffusion Model(LDM)、SDXL 和 SDXL-Turbo。 这三个工作的主要作者基本相同,早期是在 CompVis 和 Runway 等发表,后两个主要由 Stability AI 发表。 LDM 对应的论文为: [2112.10752] High-Resolution Image Synthesis with Latent Diffusion Models. LDM 对应的代码库为:High-Resolution Image Synthesis with Latent Diffusion Models.
[2308.05734] AudioLDM 2: Learning Holistic Audio Generation …
2023年8月10日 · To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called "language of …