
Euler's formula - Wikipedia
Euler's formula states that, for any real number x, one has = + , where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively.
欧拉公式 - 维基百科,自由的百科全书
欧拉公式 (英語: Euler's formula,又稱 尤拉公式)是 複分析 领域的公式,它将 三角函数 與 复指数函数 关联起来,因其提出者 莱昂哈德·歐拉 而得名。 歐拉公式提出,對任意 实数 ,都存在. 其中 是 自然对数的底数, 是 虚数單位,而 和 則是 餘弦 、 正弦 對應的 三角函数,参数 則以 弧度 为单位 [1]。 這一複數指數函數有時還寫作 cis x (英語: cosine plus i sine,余弦加 i 乘以正弦)。 由於該公式在 為 複數 時仍然成立,所以也有人將這一更通用的版本稱為歐拉公式 [2]。 …
Euler’s formula allows one to derive the non-trivial trigonometric identities quite simply from the properties of the exponential. For example, the addition for-mulas can be found as follows: cos( 1 + 2) =Re(ei( 1+ 2)) =Re(ei 1ei 2) =Re((cos 1 + isin 1)(cos 2 + isin 2)) =cos 1 cos 2 sin 1 sin 2 and sin( 1 + 2) =Im(ei( 1+ 2)) =Im(ei 1ei 2) =Im ...
Euler's Formula and Euler's Identity - Newcastle University
Euler's Formula states that for any real x x, eix =cosx+isinx, e i x = cos x + i sin x, where i i is the imaginary unit, i = √−1 i = − 1. Euler's formula can be used to derive the following identities for the trigonometric functions sinx sin x and cosx cos x in terms of exponential functions:
欧拉公式 - 百度百科
在代数拓扑中, 欧拉示性数 (Euler characteristic)是一个 拓扑不变量 (事实上是 同伦不变量 ),对于一大类 拓扑空间 有定义,通常记作 二维拓扑 多面体 的欧拉示性数可以用以下公式计算:
Euler’s sine product first appears in §16 of his E41 (Enestrom Index) and the cotangent expansion in E61 (again¨ §16). Made rigorous over the complex numbers they are, respectively, applications of Weierstrass’s Factorisation Theorem and Mittag-Leffler’s Theorem (both 1876).
Euler's Sine Identity - ProofWiki
2024年2月9日 · Euler's Sine Identity can also be presented in the form: $\sin z = \dfrac 1 2 i \paren {e^{-i z} - e^{i z} }$ Also see. Euler's Cosine Identity; Euler's Tangent Identity; Euler's Cotangent Identity; Euler's Secant Identity; Euler's Cosecant Identity; Arcsine Logarithmic Formulation; Source of Name. This entry was named for Leonhard Paul Euler ...
Euler's Formula | Brilliant Math & Science Wiki
Euler's formula allows for any complex number x x to be represented as e^ {ix} eix, which sits on a unit circle with real and imaginary components \cos {x} cosx and \sin {x} sinx, respectively. Various operations (such as finding the roots of unity) …
Euler Formula for Sine Function - ProofWiki
2025年3月14日 · for all x ∈R x ∈ R. for all z ∈ C z ∈ C. This entry was named for Leonhard Paul Euler. The Euler Formula for Sine Function was not put on an adequately rigorous footing until Karl Weierstrass provided a satisfactory proof for Weierstrass Factor Theorem.
Euler's Formula - ProofWiki
2024年12月8日 · Leonhard Paul Euler famously published what is now known as Euler's Formula in $1748$. However, it needs to be noted that Roger Cotes first introduced it in $1714$, in the form: $\map \ln {\cos \theta + i \sin \theta} = i \theta$