
Direct thrombin inhibitor - Wikipedia
Direct thrombin inhibitors (DTIs) are a class of medication that act as anticoagulants (delaying blood clotting) by directly inhibiting the enzyme thrombin (factor IIa). Some are in clinical use, while others are undergoing clinical development.
Direct Thrombin Inhibitors - Cleveland Clinic
What are direct thrombin inhibitors? Direct thrombin inhibitors are anticoagulants (“blood thinners”), which prevent blood clots. They use ingredients similar to a protein from a medicinal leech’s saliva, which some discontinued forms of the drug used.
Direct thrombin inhibitors: Clinical uses, mechanism of action, …
2011年8月1日 · Direct thrombin inhibitors (DTIs) are a class of anticoagulants that act by directly inhibiting thrombin to delay clotting and are typically used during HIT and in acute coronary syndrome (see Table 1). Hirudin, the first parenteral DTI to be used, was isolated in the late 1800s from the medicinal leech, Hirudo medicinalis.
DeepConv-DTI: Prediction of drug-target interactions via deep learning ...
2019年6月14日 · Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches.
CAT-DTI: cross-attention and Transformer network with domain …
2024年4月2日 · Accurate and efficient prediction of drug-target interaction (DTI) is critical to advance drug development and reduce the cost of drug discovery. Recently, the employment of deep learning methods has enhanced DTI prediction precision and efficacy, but it still encounters several challenges.
DeepConv-DTI: Prediction of drug-target interactions via deep
2019年6月14日 · Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico -based DTI prediction approaches.
药物靶标相互作用drug-target interactions(DTI)论文模型创新点 …
2024年9月13日 · 双线性注意力网络(Bilinear Attention Network, BAN):引入双线性注意力机制来显式学习药物和靶标之间的局部相互作用。 这种机制允许模型在药物分子的不同部分(如原子)和靶标蛋白质的不同部分(如氨基酸残基)之间捕捉复杂的相互作用,从而提高预测的准确性和可解释性。 领域适应(Domain Adaptation):通过条件领域对抗学习(Conditional Adversarial Domain Adaptation, CDAN)来对齐不同分布之间的数据,以提高模型在新药物-靶标对上的泛 …
MCL-DTI: using drug multimodal information and bi-directional …
2023年8月26日 · To enhance feature learning between drugs and targets, we propose a novel model based on deep learning for DTI task called MCL-DTI which uses multimodal information of drug and learn the representation of drug–target interaction for drug–target prediction.
Towards a more inductive world for drug repurposing approaches
2025年2月13日 · Drug–target interaction (DTI) prediction is a challenging albeit essential task in drug repurposing. Learning on graph models has drawn special attention as they can...
DeepDrug:一个用于DDI和DTI预测的GNN框架-CSDN博客
2024年2月21日 · DeepDrug是一个基于图的深度学习框架,用于学习药物相互作用,如DDI或DTI。 关键见解是: 相互作用主要由参与实体的序列和结构决定,药物和蛋白质都可以自然地用图表表示。 DeepDrug具有以下贡献: 与以前只使用序列或结构信息的方法不同。 DeepDrug将传统的序列表示和基于结构的图表示作为输入,以学习更全面的药物或蛋白质表示。 引入了一种新的Res-GCN模块,以更好地捕捉化合物原子和蛋白质残基之间的内在结构信息。 DeepDrug是第 …