
trigonometry - How to simplify $\sin^4 x+\cos^4 x$ using ...
$\sin^{4}x+\cos^{4}x$ I should rewrite this expression into a new form to plot the function. \begin{align} &; = (\sin^2x)(\sin^2x) - (\cos^2x)(\cos^2x) \\ & ...
How do you simplify cos^4(x) by using power reducing formulae?
How do you simplify $\\cos^4(x)$ using the power reducing formula?
Need help using De Moivre's theorem to write $\\cos 4\\theta
I need help with the following question: "Use De Moivre's theorem to write $\cos 4\theta$ & $\sin 4\theta$ as terms of $\sin\theta$ and $\cos\theta$" You could write the problem as: $(\cos\...
How to integrate $\\int \\frac{1}{\\sin^4x + \\cos^4 x} \\,dx$?
Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their …
complex numbers - Write an expression for $(\cos θ + i\sin θ)^4
It says to use both ways to show that cos 4θ = 8 cos^4 θ − 8 cos2^ θ + 1. and to also show that sin 4θ = 8 cos^3 θ sin θ − 4 cos θ sin θ. $\endgroup$ – user3924310 Commented Nov 17, …
How do you find the derivative of # Cos^4(2x)#? - Socratic
2016年2月3日 · How do you find the derivative of # Cos^4(2x)#? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x)
How do you evaluate #cos((-4pi)/3)#? - Socratic
2016年8月15日 · Trig table of special arcs, and unit circle --> #cos ((-4pi)/3) = cos ((4pi)/3) = cos (pi/3 + pi) = - cos (pi/3) = -1/2#
How do you find the integral of #cos^4 (2x) * sin^3 (2x)#? - Socratic
2016年7月15日 · = - 1/10 cos^5 (2x) + 1/14 cos^7 (2x) sin (2x) + C cos^4 (2x) * sin^3 (2x) = cos^4 (2x) * sin (2x) * sin^2 (2x) = cos^4 (2x) * sin (2x) * ( 1- cos^2 (2x) ) = cos^4 ...
What is the integral of int sin^2(x)cos^4(x) dx? - Socratic
2016年6月5日 · \frac{1}{16}\(x-\frac{1}{4}\sin \(4x\))+\frac{1}{6}\sin ^3\(x\)\cos ^3\(x)+C \int \sin^2\(x\)cos^4\(x\)dx Applying integral reduction, int sin^2(x) cos^n (x) dx ...
integration - Integrate $\int\sin^2 (x)\cos^4 (x)dx$ - Mathematics ...
$$\int (1-\sin^2(x)) \cos^4(x) \, dx = \int \cos^4(x) \,dx - \int\sin^2(x) \cos^4(x) \, dx$$ but that's the same as our original integral, so we can move it over to the LHS to get $$\frac{6}{5} \int …