
[2201.03545] A ConvNet for the 2020s - arXiv.org
2022年1月10日 · Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet …
OverLoCK: An Overview-first-Look-Closely-next ConvNet with …
2025年2月27日 · However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this …
[2311.09215] ConvNet vs Transformer, Supervised vs CLIP: Beyond ...
2023年11月15日 · In this work, we conduct an in-depth comparative analysis of model behaviors beyond ImageNet accuracy, for both ConvNet and Vision Transformer architectures, each …
A ConvNet for the 2020s | IEEE Conference Publication - IEEE Xplore
In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of a vision …
In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of a vision …
Conv2Former: A Simple Transformer-Style ConvNet for ... - IEEE …
In this paper, we take a deep look at the internal structure of self-attention and present a simple Transformer style convolutional neural network (ConvNet) for visual recognition. By comparing …
【论文简述及翻译】A ConvNet for the 2020s(CVPR 2022) - CSDN …
6 天之前 · 卷积神经网络 (Convolutional Neural Network, ConvNet) 是目前用于图像处理、语音识别、自然语言处理等领域的主流深度学习模型之一。在 2020 年代,ConvNet 将继续发挥重要 …
A ConvNet for the 2020s解读 - 知乎 - 知乎专栏
摘要: 视觉识别在2020年井喷式发展,始于Vision transformer (ViTs)的引入,它很快取代了 卷积神经网络 (ConvNets)成为最先进的图像分类模型。 另一方面,普通的ViT在应用于一般的计算 …
CVPR22: CNN | 2020s 卷积神经网络 ConvNet - 知乎 - 知乎专栏
Modernizing a ConvNet: a Roadmap 作者从ResNet-50开始,研究了一系列“network modernization”操作,通过FLOPs和在ImageNet-1K上的Acc这两个指标来验证改进操作是否 …
(PDF) A ConvNet for the 2020s - ResearchGate
2022年1月10日 · We demonstrate that a standard ConvNet model can achieve the same level of scalability as hierarchical vision Transformers while being much simpler in design. We …
- 某些结果已被删除