
How do you find the value of #csc (sin (2/3))#? - Socratic
2015年6月11日 · Find the value of csc (arcsin (2/3)) sin x = 2/3 --> x ? sin x = 2/3 = 0.67 --> x = 41.81 and x = 180 - 41.81 = 138.19 a. csc (41.81) = 1/sin (41.81) = 1/0.67 = 1.49 (Quadrant I) b. csc (138.19) = csc (-41.81) = 1/sin (-41.81) = = 1/-0.67 = -1.49 (Quadrant II)
How do you find the exact value for #csc(sin^-1 (sqrt 3/2))
2016年2月12日 · How do you find the exact value for #csc(sin^-1 (sqrt 3/2))#? Trigonometry Inverse Trigonometric Functions Basic Inverse Trigonometric Functions 1 Answer
How do you simplify (cot(x))/(sin(x)-csc(x))? - Socratic
2018年2月19日 · #cotx/(sinx-cscx)# #(cosx/sinx)/(sinx-1/sinx)# #((cosx/sinx)*sinx)/((sinx-1/sinx)*sinx)# #((cosx/color(red)cancel(color(black)sinx))*color(red)cancel(color(black)sinx ...
How to find the value of csc 10? - Socratic
2015年5月23日 · csc 10 = 1/sin 10. Calculator gives -> sin 10 = 0.173. Answer link. Related questions
How do you simplify #cos(pi/2 - x) * csc(-x)#? - Socratic
2018年4月5日 · cos(pi/2-x)*csc(-x)=-1 for x not a multiple of pi. We know that the angles of a right triangle must sum to pi radians. Since the right angle is pi/2 radians, the other two angles must sum to pi/2 radians. Therefore pi/2 minus the adjacent angle must be the opposite angle.
How do you verify cot^2 x/ (1+csc x) = (1-sin x)/ sin x? - Socratic
2015年8月12日 · sin^2 A + cos^2 A = 1 Divide by sin^2 A 1 + cot^2 A = csc^2 A cot^2 x/(1+csc x) = (csc^2 x-1)/(1+csc x) = ((csc x-1)(csc x+1))/(1+csc x) = 1/sin x - 1 = (1 - sin x)/sin x
How do you prove #(csc(-t)-sin(-t))/sin(t) = -cot^2(t)#? - Socratic
2015年5月16日 · How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#?
How do you prove #cot(x)cos(x)+sin(x)=csc(x)#? - Socratic
2015年12月18日 · (cot x.cos x) + sin x = (cos x/sin x)(cos x) + sin^2 x/(sin x) = = (cos^2 x + sin^2 x)/sin x = 1/(sin x) = csc x
Sin^2theta (1-csc^2theta)? - Socratic
2018年2月12日 · The expression simplifies to -cos^2theta Recall that csctheta = 1/sintheta. =sin^2theta(1 - 1/sin^2theta) =sin^2theta - sin^2theta/sin^2theta =sin^2theta- 1 Now recall that since cos^2x+ sin^2x = 1, sin^2x- 1= -cos^2x. =-cos^2theta Hopefully this helps!
How do you simplify #(tan(x))^2 sin(x) csc(x)#? - Socratic
2015年7月24日 · How do you apply the fundamental identities to values of #theta# and show that they are true