
How do you find the exact value of arcsin1? - Socratic
2016年12月30日 · arcsin(1)=pi/2 By general definition the arcsin function is defined as having a range [0,pi) If we want a ...
How do you calculate arcsin(-1/2)? - Socratic
2016年3月26日 · These 2 arcs have the same sin value (- 1/2). Answers: (7pi)/6 and (11pi)/6 (co-terminal to (-pi/6 ...
How do you find the exact value of #arcsin(-1)#? - Socratic
2017年2月10日 · arcsin(-1)=-90+360k, k in ZZ If we set x=arcsin(-1), then sinx=-1 This is easy to solve as we know a sinusoidal wave touches y=-1 at -90, 270, 630 etc.
How do you calculate the #arcsin (-1/ sqrt 2)#? - Socratic
2015年11月27日 · Calculate arcsin (-1/sqrt2) Ans: (5pi)/4 and (7pi)/4 Unit circle and trig table of special arcs --> sin x = - 1/sqrt2 = - sqrt2/2 --> arc x = - pi/4 Unit circle gives another arc x that …
What is the derivative of #arcsin(sqrt(1-x^2))#? - Socratic
2015年8月14日 · For the original function, f(x)=arcsin(sqrt{1-x^2}), evidently it's like taking the graph of arcsin(x), shifting it up by pi/2 units, and then reflecting the part of it for x>0 across …
How do you find the derivative of #arcsin(1/sqrt(x^2+1))
2017年4月21日 · dy/dx=-1/(x^2+1); if x>0, =1/(x^2+1); if x<0. N.B.: y=arc sin(1/sqrt(x^2+1)), x inRR is not differentiable at x=0. Let, y=arc sin (1/sqrt(x^2+1)), x in RR. Let x=cottheta," so …
How do you calculate #arcsin (-1/ sqrt 2)#? - Socratic
2015年7月20日 · How do you use the properties of inverse trigonometric functions to evaluate #tan(arcsin (0.31
What is #arcsin(sin(1/4))# - Socratic
2017年1月6日 · What is #arcsin(sin(1/4))# ? Trigonometry Inverse Trigonometric Functions Basic Inverse Trigonometric ...
How do you evaluate #sin(arcsin(1/2) + arccos (0)) - Socratic
2018年6月22日 · Under the multivalued interpretation, sin (arcsin(1/2) + arccos(0)) =pm \sqrt{3}/2 # Let's use the multivalued interpretation of arcsin and arccos. The real question is what is sin …
How do you evaluate arcsin^-1(-1/2) without a calculator? - Socratic
2018年5月25日 · Given: #arcsin^-1 (-1/2)# I believe what you want is #arcsin (-1/2) = sin^-1(-1/2)# #arcsin (-1/2)# says, find me the angle that has a sine #= -1/2#, or what is the angle #theta# …