
How do you simplify 1 - (sin 30)^2? - Socratic
2015年5月23日 · (1 - sin^2 30) = (1 - sin 30)(1 + sin 30) = (1 - 1/2)(1 + 1/2) = 3/4. How do you apply the fundamental identities to values of #theta# and show that they are true?
How do you verify (1-sin^2Ѳ)(1+cot^2Ѳ)=cot^2Ѳ? - Socratic
2018年3月13日 · #f(t) = (1 - sin^2 t)(1 + cot^2 t)# Transform the first factor: #(1 - sin^2 t) = cos^2t# Transform the second factor:
how to simplify (1/sin^2x) - (1/tan^2x)? - Socratic
2018年4月6日 · Or, 1/sin^2x-1/tan^2x=csc^2x-cot^2x=1. Trigonometry . Science Anatomy & Physiology Astronomy ...
How do you find the integral of #1/Sin^2 (x) + cos(2x)#? - Socratic
2018年1月4日 · int\\ 1/sin^2(x)+cos(2x)\\ dx=1/2sin(2x)-cot(x)+C First, I will split up the integral into two parts: int\\ 1/sin^2(x)+cos(2x)\\ dx=int\\ 1/sin^2(x)\\ dx + int\\ cos(2x)\\ dx I will call the …
How do you simplify #(1 - (sinx)^2) / (sinx - cscx)#? - Socratic
Let's begin by simplifying the denominator of the fraction. using #cscx=1/(sinx)" we obtain"#. #sinx-1/sinx# which we require to express as a single fraction.
How do you find the derivative of #y = sqrt(1-sin^2x)#? - Socratic
2017年1月22日 · y' = -sinx By the pythagorean identity sin^2x + cos^2x = 1: y = sqrt(cos^2x) y= cosx This can be differentiated as -sinx, but here's proof using limits. y' = lim_(h ...
How do you integrate (sin x)/(1+sin x)^2? - Socratic
2015年5月22日 · Based on this answer, it seems good in the denominator of the original integrand to write (using the double-angle formula for sine after writing #x=2\cdot x/2# and then using …
#(1-sin2A)(1+tan2A)=1# prove it!!?? - Socratic
2018年3月1日 · = (1+tan^2A)(1-sin^2A) = sec^2A xx cos^2A = 1/cancel(cos^2A)xxcancel(cos^2A) = 1
How do you integrate int cost/sqrt(1+sin^2t) by trigonometric ...
2016年9月11日 · lnabs(sqrt(sin^2t+1)+sint)+C We have: intcost/sqrt(1+sin^2t)dt We will use the substitution sint=tantheta. Thus, costdt=sec^2thetad theta. Substituting, this yields: …
What is the derivative of #-1/(sin(x)^2)#? - Socratic
2016年12月26日 · d/(dx) (-1/sin^2x) = (2cosx)/(sin^3x) Based on the chain rule: d/(dx) (-1/sin^x) = d/(dsinx) (-1/sin^2x) * (dsinx)/(dx)= 2/(sin^3x)cosx